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A Stochastic Cellular Automaton Model of 
Non-linear Diffusion and Diffusion with Reaction 

LEESA M. BRIEGER AND ERNESTO B~N~MI 

This article presents a stochastic cellular automaton model of diffusion and diffusion with 
reaction. The master equations for the model are examined, and we assess the difference 
between the implementation in which a single particle at a time moves (asynchronous 
dynamics) and one implementation in which all particles move simultaneously (synchronous 
dynamics). Biasing locally each particle’s random walk, we alter the diffusion coefficients of 
the system. By appropriately choosing the biasing function, we can impose a desired non- 
linear diffusive behaviour in the model. We present an application of this model, adapted to 
include two diffusing species, two static species, and a chemical reaction in a prototypical 
simulation of carbonation in concrete. ( 1991 Academic Pros. Inc 

1. INTRODUCTION 

The construction of a computer simulation of a physical phenomenon has begun 
traditionally with a mathematical model consisting of differential equations defined 
in the continuum. This is followed by the definition of an algorithm, or numerical 
model, to discretize and numerically solve the equations. Finally, the numerical 
model is implemented on a computer, yielding the computer simulation and the 
numerical results which are studied to demonstrate, predict, or clarify the 
phemonenon in question. Of note is the fact that the linal computer model is several 
approximations removed from the original: the numerical schema approximately 
solves the equations of the mathematical model, and, because of the round-off 
inherent in floating-point calculations, the computer implementation is itself only 
an approximation of the numerical model. (In fact, a principal concern in the field 
of numerical analysis is the quality of these approximations, i.e., assuring that the 
final numerical solutions generated by the computer are faithful to the true solution 
of the original mathematical model.) 

Cellular automata offer an alternative to this approach to modelhng Ll]. In a 
cellular automaton model, space is discretized by a lattice whose grid points (sites) 
are permitted a finite number of values (states). The state of each site evolves step 
by step in the model. This evolution is governed by a set of local microscopic laws 
(rules), identical at all the sites and which, if chosen properly, produce in the model 
the macroscopic behaviour to be simulated. The rules can be implemented as logi- 
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cal functions performed between bits representing the states of the sites, in which 
case the machine implementation entails no approximation of the model but is 
exact. The results are then the direct image of the model, illustrating its behaviour 
without the additional influence of approximative numerical methods. Because of 
this and due to their local nature, cellular automata are also easier to adapt so as 
to increase the complexity of the model. Currently, modern computing capacity and 
special machine architecture render cellular automata practical for large numerical 
simulations. The intrinsic granularity of the resulting algorithms leads naturally to 
their implementation on vector and parallel machines [2], and machine architec- 
ture tailored to the large number of site-by-site calculations of cellular automata 
dynamics has given rise to one class of dedicated machines [3,4]. The development 
of parallel and dedicated computers is motivating the design of numerical algo- 
rithms which exploit special machine structure. Cellular automata can be viewed as 
such a class of special-purpose algorithms, and investigation of them as methods for 
solving differential equations has begun [S-7]. 

The philosophy behind modelling with cellular automata is to implement local 
conservative microscopic laws and thus simulate the deterministic macroscopic 
behaviour of a physical system [S]. Although the micro-laws may be artificial, they 
must capture the essential global features of the system. The micro--macro connec- 
tion is not obvious and it can be difficult to design local laws whose dynamics 
reproduce the appropriate cooperative behaviour. With this in mind, we have taken 
advantage of the well-established relation between the random walk of a Brownian 
particle and the diffusion equation [9] to develop a stochastic cellular automaton 
model for the simulation of diffusion, linear and non-linear. In our application we 
further consider diffusion with reaction in a porous medium to simulate the 
carbonation of concrete, a corrosive process which occurs in the presence of 
drying [lo]. 

We have first implemented the random walk simulation, adapted to a population 
of Brownian particles which respect an exclusion principle, to model simple linear 
diffusion. We study the global behaviour corresponding to the basic rules of the 
simulation, given in Section 2, by examining the master equations for the model. 
We thus assess the qualitative difference between the asynchronous implementation 
in which a single particle at a time moves and our synchronous one in which all 
particles move simultaneously and independently. The synchronous model, while 
embodying a massively parallel algorithm, exhibits a light deviation from the true 
diffusion equation. 

To approximate non-linear diffusion, we alter the particles’ displacement 
probabilities by introducing a bias imposed by a given diffusion coefficient. This 
forces the appropriate diffusive behaviour on the system. The deviation from true 
diffusion, produced by our synchronous model and described in Section 2, remains 
present in the non-linear case. This is described in more detail in Section 3, in 
which we also introduce units into our heretofore dimensionless automaton model. 

In Section 4 we present an adaptation of the original diffusion model, intro- 
ducing two diffusing species, two static species, and a chemical reaction in a proto- 
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typical simulation of carbonation in concrete. Increasing the complexity of a 
cellular automaton simulation is simpler than the same adaptation for a traditional 
mathematical model, in which changes in the equations must be accompanied by 
an adaptation of the numerical method that solves them. In the automaton model 
there is no associated numerical schema, and changes in the model are implemented 
directly in the local rules. 

2. THE AUTOMATON MODEL 

The model of Brownian motion provided by the random walk of a particle on 
a square lattice is defined by a simple local rule: displace the particle with equal 
probability (4) in any one of the four directions on the lattice. This defines a 
probability distribution, P(x,, t,,), discrete in time and space, which is just the 
probability that position .Y~, is occupied by the Brownian particle at time r,,. At 
represents the time interval between consecutive steps of the particle and Ax the 
grid discretization. P(x,, r,,) evolves diffusively on the lattice [9], and as Ax and At 
approach zero, such that the ratio D = Ax2/4At remains constant, P(r, t) solves the 
following continuous diffusion equation (Fick’s law of diffusion) in which D is the 
(constant) diffusion coefficient, and V* indicates the Laplacian operator: 

cl;P(r, t) 
___ = D V’P(r, t). 

at 

The diffusive character of the displacement rule is seen clearly in the master equa- 
tions for the model. The process is Markovian and the probability P:” that the 
particle occupies site r = xii at time t,, + , is given as a function of the neighboring 
probabilities as time t,, by the following expression: 

P :,+1= 1 p;w:;,. 
YE 1 (r) 

(2) 

<t’(r) is the five-site von Neumann neighborhood of r (r and its nearest neighbors 
on the grid), and Wir denotes the conditional probability of moving from site q to 
site r at time t,. WCI = 0 whenever q and r are not in the same neighborhood, and 
the following conservation condition is respected: 

Solving for W;,. in (3), we use this to rewrite (2) and obtain the following descrip- 
tion for the evolution of P: 

P :"'-P:= c P;w;,-P:l c w;‘,. (4) 
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In the random walk model for one particle, the conditional probabilities for 
q E .X(r) are 

i 

1 
w;p 4’ qfr 

0, q = Y. 

Consequently, expression (4) takes the form 

p:“Lp:‘=; c 
[ 

P;-4P: ) 
4s z(r) I 

42r 

(6) 

which is the finite difference representation of diffusion equation (l), using the 
central difference approximation to the second derivative and in which 

Thus the random walk model reproduces the finite difference approximation of dif- 
fusion equation (1) on the grid. As the discretization goes to zero, with D constant, 
the finite difference solution converges to the solution of the continuous equation. 

In our model we adapt the stochastic rule to a population of particles. The rule 
is applied identically at all the sites, determining the particle displacements. Each 
particle effectively chooses at random a direction on the square lattice, targeting 
one of its four neighbors. Our rule imposes an exclusion principle which permits at 
most one particle per site in the following way: a particle moves to the site it has 
targeted if this site is free and simply does not move if the site is already occupied. 
We consider two implementations of these dynamics for a population of particles: 
an asynchronous one, in which a single particle at a time moves; and a synchronous 
one, in which the entire population of particles is updated simultaneously and 
independently. 

At each step in the asynchronous case, the local rule is applied at a single site, 
chosen at random from the N sites of the configuration. A “sweep” of the configura- 
tion is a collection of N such events. For large N the random choice of a site at 
which an event will occur is comparable to a Poisson clock which orders the events 
on the configuration. To see this, consider an arbitrary site in the configuration and 
define a success as the choice of this site for an event. Beginning with the last suc- 
cess at this site, consider the probability of no success occurring again in M sweeps; 
for large N this probability is approximated by the exponential e- M. In this con- 
text, the partition function F(M), the probability of at least one success during A4 
sweeps, is governed by the law of Poisson, F(M) = 1 - e ~ M. From this expression 
we deduce that there is, on average, one sweep between successes at a given site, 
and that, on average, each site is chosen once during a configuration sweep. 

Now consider the master equations for this model. If we consider the time inter- 
val from t,, to t,,, , of a single event, the evolution of probability P is given by (4), 



STOCHASTIC CELLULAR AUTOMATON 471 

due to the Markovian nature of the process. Here the probability of transition of 
a particle from q to r in the space of a single event at time t,, is as follows: 

Wk = -& (1 - P:‘), q E .N(r), q # r. (7) 

Using these probabilities in (4), we derive the following expression for the evolution 
of P: 

p:” -p+ 
4N 

1 
qE ( (4 ‘I # I 

(8) 

This is just the finite difference form of diffusion equation (1) with 

We conclude that in the asynchronous automaton, the particle population diffuses 
on the lattice, and the model reproduces the solution of the discrete approximation 
of diffusion equation (l), Fick’s equation. We consider now a synchronous alter- 
native. 

In the synchronous model, for which a timestep Ai = t,, + I - t,, is the time interval 
of a configuration update, conflicts between particles vying for a single free site 
must be resolved. In our implementation, only one of the competing particles, 
chosen randomly from among them, is allowed to move to the unoccupied site, and 
the others do not move. This induces interactions between particles beyond just the 
immediate neighborhood. To characterize the resulting correlations, we can write 
the transition probabilities as 

w;,=;(l-P:‘)A;,, q E I l”(r ), q # r, (9) 

where A;, represents the conditional probability that the transition from q to r is 
admissible, that is, that site r accepts the particle transition from site q. With these 
probabilities of transition, Eq. (4), describing the evolution of P, becomes: 

If the automaton rule for the synchronous implementation were to produce a func- 
tion A such that everywhere A:r= Arq, then the term in brackets would be diffusive 
with a diffusion coefficient represented by A (see Section 3), and the second term 
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would vanish, reproducing the finite difference form of Fick’s equation. This is not 
the case for our synchronous rule, and our model retains some deviation from pure 
diffusion. 

To illustrate the disparity between Fick’s diffusion and this synchronous model, 
we consider in detail the one-dimensional case in which particles move left or right 
with probability $, respecting the exclusion principle. The one-dimensional 
neighborhood J$ of site rj consists of sites Y,- , , r, and r, + , , and the transition 
probabilities W, corresponding to (9) are 

W:,=$(l -P:‘)& i=j-l,j+l, (11) 
where 

A:’ ,,,=l-iPl’+, 

A;+,.,= 1 - &P:‘~- ,. 

The dynamics are still Markovian and Eq. (4) describes the probability evolution, 
which takes the form with the transition probabilities of (1 1 ), 

where 

E:‘=~{Pr~,(l-P1~,)P:‘-2P:‘_,(l-P:’)P:+,+Pr(l-P1+,)P:‘+,}. 

Equation (12) is the one-dimensional finite difference form of diffusion equation (1) 
with 

plus the “correction” term E,“, which, for uniform populations (P constant), is zero. 
The effect of this extra term on the simulation is illustrated in an example of one- 
dimensional diffusion at equilibrium, Fig. 1. The diffusion equation 

au 1 a2u u(0, t) = 0 
dt 2 ax’ 

with 
U(1, t)= 1 (13) 

has equilibrium solution u(x, t) =x on the unit interval. Constraining the 
automaton dynamics to one dimension, we use the synchronous model to conduct 
100 simultaneous one-dimensional simulations of this problem on the two-dimen- 
sional grid. The initial density of the particles on the two-dimensional lattice is dis- 
tributed so as to correspond to the equilibrium solution of problem (13), the 
dashed line in the figure. The steady state of the model is shown in Fig. 1: the 
smooth curve is the fixed point of the numerical iteration defined by (12) with 
P(x, 0) =x, and the “experimental” points are the measurements of the average 
particle distribution, as a function of x, over the 100 automaton experiments, at 
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0. Position ‘. 

FIG. 1. Law of Fourier. The dashed line is the steady-state solution of Eq. (13). The solid curve is 
the exact concentration at equilibrium for the synchronous automaton; i.e., it is the fixed point of the 
numerical iteration defined by Eq. (12). The *‘s indicate the automaton concentration measurements at 
equilibrium (timestep 20,000). 

timestep 20,000. Equilibrium for the synchronous system is not the straight line 
equilibrium solution of (13) nor does it approach the straight line as the discretiza- 
tion is made increasingly fine. The effect of the competition for free sites is to intro- 
duce a form of “hardcore interactions” and to slightly inhibit the diffusion. 

In general, finding the right microscopic automaton rules for correctly repro- 
ducing a given equation is a problem with no immediate answer; there is no 
methodology leading to its solution. For the moment, it is probably a combination 
of physical principles and intuition that will give the automaton model corre- 
sponding to a desired macroscopic behaviour. This problem is illustrated by the 
difficulty of defining a probabilistic synchronous model for simulating the diffusion 
equation without spurious effects. 

Although the asynchronous dynamics more closely reproduce Fick’s equation of 
diffusion, it is the synchronous model which holds the interest as a massively 
parallel algorithm, and it is on the synchronous model that we have concentrated 
our practical efforts. The figures in this article are all “snapshots” of the syn- 
chronous implementation. 

3. NON-LINEAR DIFFUSION 

Equation (1) in Section 2 is an example of Fick’s law of diffusion in the special 
case of a constant coefficient D. Non-uniform diffusion, as in a porous medium, can 
also be modelled by Fick’s equation: 

$=div(L/.grad U) (14) 
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in which the coefficient 9 is a positive function of position or of the solution. Fick’s 
law remains the physical model of the phenomenon, in which the interacting 
influences of porosity and fluid characteristics [ 111 are described by an effective 
diffusion coefficient which captures the phenomenology and governs the model 
accordingly. The coefficient can be supplied either from theoretical considerations 
or from experimental observations, and when it is a function of the solution U, 
Eq. (14) is non-linear. Drying in concrete modelled as non-linear diffusion, studied 
in [ 121 and applied in [ 131, represents an application of such an approach. 

We have adopted this approach for our automaton model of diffusion in a 
porous medium. We have chosen not to recreate in the automaton the detailed 
microscopic processes which produce diffusion; rather, we have constructed a 
model which simulates the non-linear diffusion equation. Assuming the diffusion 
coefficient given, we use it to influence the displacement probabilities in the 
automaton in such a way as to reproduce the effect of the coefficient and the 
behaviour of Eq. (14). 

The idea and the algorithm are as follows. In two dimensions, rather than 
choosing its displacement direction with probability a, a particle targets a direction 
with probability $D, where D is a given function which can be evaluated on the 
lattice. We denote by 0: the function D evaluated at site r at moment t,, and by 
Dtr the arithmetic average of Dt and Dr, D;,. = (D: + D:)/2. Then we use this value 
of D on the lattice edges to bias the displacement probabilities: a particle at site 4 
chooses to move in the direction of neighboring site Y with probability $Dir. Notice 
that 0 6 D < 1 must hold since D serves as a probability, and that by using such 
a function to bias a particle’s random walk, we introduce a non-zero probability 
that the particle choose not to move. The transition probabilities for such an 
asynchronous model with N sites are the following: 

Wir = &Dirt 1 -P:‘), 4 E J”(r), 4 Zr. (15) 

As before, Eq. (4) describes the evolution of the occupation probability at a site r. 

Since D is constant on each lattice edge, D",r = DFcj, (4) takes the following form: 

FIG. 2. Non-linear diffusion in the synchronous automaton. (a) The diffusion coefficient 9 versus the 
concentration U. The smooth curves show a finite element solution of Eq. (14) in one dimension at the 
indicated times. The experimental points are the “snapshot” automaton concentrations, measured at the 
same moment of simulated time. 
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Equation (16) is the finite difference formulation on the square lattice of Eq. (14) 
with 

g= AX2 
- D. 
4NAt 

Thus, given a diffusion coefficient 9, we can implement it, to within a scaling 
constant, in the automaton and reproduce the corresponding non-linear diffusive 
behaviour in the particle population. 

When 9 is a function of the solution U, D must be evaluated site-by-site as a 
function of the occupation probability P, which is just the local average occupation 
number. In this article we approximate this average by the particle concentration 
in a neighborhood. Notice that a particle count on the five-site von Neumann 
neighborhood gives only six possible values of the particle concentration. Enlarging 
the neighborhood on which a concentration is measured increases the number of 
possibilities, as does using a weighted particle count. The experiment of Fig. 2 was 
run with local concentrations calculated on the Moore neighborhood (the von 
Neumann neighborhood plus the corners) with weights of a, i, and &. The 
automaton rule was not changed; i.e., particle movement remained restricted to the 
five-site von Neumann neighborhood. The result is a finer representation of the 
diffusion coefficient and a smoothing of the concentration distributions shown in 
the figure. 

Figure 2 shows a comparison between our synchronous automaton results and a 
finite element solution for non-linear diffusion equation (14) in one dimension, with 
the coefficient 9 a function of u as shown. The two-dimensional automaton con- 
figuration, implemented with a fixed boundary condition along x = 1 and zero flux 
conditions along the other borders, is given a one-dimensional representation by 
plotting the column-by-column average concentration as a function of x. The 
smooth curves show the finite element solution of the one-dimensional equation at 
the indicated times, and the experimental points are the “snapshot” automaton 
concentrations, measured at the same moment of simulated time. The effect of the 
discrepancy between Fick’s equation (14) and the master equations of the syn- 
chronous model (described in Section 2) is apparent in the figure for intermediate 
values of the solution. 

Such a comparison as that of Fig. 2 necessitates that we introduce units into the 
heretofore dimensionless automaton. The finite difference form of Eq. (14) for 
arbitrary 9 can be written as 

where k is a normalization constant and 9 = kD, 0 d D 6 1. If the time-space 
discretizations respect the relation 

At=-&A.’ 
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and D is the function implemented in the automaton model, then Eq. (17) 
corresponds exactly to balance equation (16) of the automaton. Ax represents the 
discretization of the spatial domain by the model. The interval At represents the 
simulated time elapsed during one event of the asynchronous automaton. We can 
also use this to define the time elapsed with one step of the synchronous model, 
that is, for one configuration sweep (N events): 

At=&A.r’. (19) 

Having calibrated the cellular automaton model with respect to simple diffusion, 
it is useful and straightforward to expand the model and increase its complexity. 
Figures 3 and 4, showing the two-dimensional automaton configurations and the 
corresponding one-dimensional population distributions, are examples of two such 
extensions of the model. Figure 3 follows the evolution of the probabilistic 
automaton model of a system with two inter-diffusing, non-reacting species, A and 
B. The system is closed (zero flux conditions on all four sides) and the two species 
are initially separated by a membrane which is removed at time 0. While the 
implemented rule is linear with a constant diffusion coefficient, the resulting 
cooperative dynamics produce non-linear diffusion between the two populations. 
Figure 4 shows the evolution of the system in which the two diffusing species, A and 
B, are reactive, producing a third, stationary species, C: 

A+B-,C. (20) 

The initial configuration contains no particles of C, and A and B are initially 
separated by a membrane. With the removal of the membrane, the diffusion- 
controlled reaction begins, and the closed system evolves a distribution of C. 

4. DIFFUSION WITH REACTION: CARBONATION 

We now consider the application of the model to a more complex problem: the 
simulation of a diffusion-driven reaction in a porous medium, concrete [13]. 

The carbonation of concrete is a corrosion process provoked by the drying of the 
concrete and its exposure to air which contains carbon dioxide, COZ. The CO,, 
entering concrete pores which have been emptied by drying, reacts with calcium 
hydroxide, Ca(OH),, present in the concrete as a hydration product. The reaction 
forms calcium carbonate, CaCO,, and liberates water in a series of reactions 
usually represented simply as: 

CO2 + Ca(OH), --) CaCO, + H,O. (21) 

The carbonation reaction normally moves inward at the rate of millimeters per 
decade, depending on such factors as the porosity of the concrete, its Ca(OH)> 
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FKG. 3. Two-species inter-diffusion. Linear diffusion dynamics (D constant) drive the two popula- 
tions, A(*) and E( c ), which are initially separated by a membrane. The resulting interactions give rise 
to non-linear behaviour of the two species. Shown are the configurations of the model at the times 
indicated and the corresponding one-dimensional distributions of the two species. 

content, atmospheric relative humidity and exposure to wetting-drying cycles, 
cracking, surface treatment, etc. In water-saturated conditions the carbonation front 
does not advance at all and one witnesses a buildup of CaCO, at the surface. 
Under “normal” conditions, the reaction proceeds inward, transforming Ca( OH )I 
into CaCO, as it goes. This transformation, once complete, lowers the pH of pore 
water to a level below that which protects interior steel reinforcements from corro- 
sion. The “carbonated zone,” the surface layer in which the Ca(OH)Z has been 
exhausted and the pH diminished, progresses inward with the diffusion of the CO,, 
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Timestep 
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FIG. 3-Conrinued 

threatening the integrity of interior reinforcements once it reaches them. To date, 
there is no adequate mathematical model which furnishes a macroscopic description 
of the various interacting factors and their influence on the carbonation environ- 
ment. 

We begin here the development of an automaton model of carbonation, based on 
the stochastic model of diffusion presented in the preceding sections. The adapta- 
tion of the original model to include several species and a chemical reaction is 
relatively simple. Of considerable importance is the fact that there is no accom- 
panying numerical method which must be redefined and implemented in order to 
solve the revised model. In the following we give an illustration of the cellular 
automaton as a simulation tool rather than a systematic study of carbonation. 
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Timestep Timestep 
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FIG. 4. Diffusion with reaction, A + B --t C. Populations A(*) and B( 0 ), initially separated by a 
membrane, diffuse and react, forming the product C( + ), Shown are the configurations of the model at 
the times indicated and the corresponding one-dimensional distributions of the three species. 

In the automaton simulation, CO, and H,O are modelled as two populations of 
diffusing particles obeying the exclusion principle (never more than one diffusing 
particle per site). The movement of each population on the automaton lattice is 
governed by a diffusion coefficient furnished by experimental observations and 
representative of these fluids in the porous medium. Both diffusion coefficients are 
functions of the amount of water present in the concrete, giving a non-linear 
character to the diffusion system [12]. Ca(OH)2 and CaCO, are supposed held in 
the pore walls and hence are represented as stationary populations of fixed particles 
in the background. The carbonation reaction occurs whenever the random walk of 
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Position 

the CO2 produces a collision with a Ca(OH), particle, provoking the spontaneous 
transformation of these two species according to (21). 

Units of time simulated by the automaton are dictated by relation (19), 
k= lop4 mm*/s, Ax = 2 mm (a sample width of 100 mm and 50 intervals in the 
automaton). Total water content in a porous material, at a given atmospheric 
relative humidity, depends on the pore size distribution of the material. Empirical 
curves, the sorption isotherms, relate the total water content per unit volume to 
relative humidity, for given pore distributions, in hardened cement pastes [14, 151. 
The number of moles per cubic millimeter represented by a particle in the 
automaton is calibrated using the sorption isotherm for water corresponding to the 
porosity of the material studied: 3,6 x 10 -~5 moles/mm3 in this case. This choice of 
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FIG. 5. Simulated behaviour of the carbonation reaction, CO* + Ca(OH), + CaCO, + H,O, in a 

mortar specimen. The sample is initially saturated with water (*) and dries in an atmosphere of CO, ( ). 
We see the redistribution of the water with drying and the progress of the reaction front. The model 
depicts the transition between the uncontaminated region and the “carbonation zone,” in which the 
transformation of Ca(OH), ( + ) into CaCO, (-) is complete. 

units guarantees that the spontaneous reaction (21) as implemented in the 
automaton is stoichiometrically correct. At the right-hand border, the boundary 
condition for water, representative of atmospheric relative humidity, is also deter- 
mined by the isotherm. The corresponding boundary condition for CO, follows 
from its solubility and the amount of water present. These boundary conditions are 
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imposed in the automaton by placing the appropriate number of particles of these 
species in the column at the right: the sum must represent the correct number of 
moles per unit volume at the surface. It is worth mentioning perhaps that in this 
application the relative quantities of the species are highly disparate: under typical 
conditions, the CO, boundary condition can be easily more than three orders of 
magnitude smaller than the boundary condition for water. The other borders 
respect zero flux conditions. Temperature is supposed constant, 20” C, for this 
simulation. 
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Figure 5 shows the simulated behaviour of the carbonation reaction in a mortar 
specimen. The sample is initially saturated with water and dries in an atmosphere 
of CO, at a fixed relative humidity of 50%, emulating laboratory conditions. 
We see the equilibration of the water content with progressive timesteps as 
the simulated specimen dries. In addition, three distinct zones are visible: the 
“carbonated zone” in which the Ca(OH), has been exhausted and the pH 
correspondingly diminished, the reaction “front,” that zone in which reaction (21) 
continues to take place, and the innermost region where the CO, has not yet 
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